
Quantifying Information Leakage of Deterministic Encryption
Mireya Jurado

Florida International University

School of Computing and Information Sciences

Miami, Florida, USA

mjurado@fiu.edu

Geoffrey Smith

Florida International University

School of Computing and Information Sciences

Miami, Florida, USA

smithg@cis.fiu.edu

ABSTRACT
In order to protect user data while maintaining application func-

tionality, encrypted databases can use specialized cryptography

such as property-revealing encryption, which allows a property of

the underlying plaintext values to be computed from the ciphertext.

One example is deterministic encryption which ensures that the

same plaintext encrypted under the same key will produce the same

ciphertext. This technology enables clients to make queries on sen-

sitive data hosted in a cloud server and has considerable potential

to protect data. However, the security implications of deterministic

encryption are not well understood.

We provide a leakage analysis of deterministic encryption through

the application of the framework of quantitative information flow.
A key insight from this framework is that there is no single “right”

measure by which leakage can be quantified: information flow

depends on the operational scenario and different operational sce-

narios require different leakage measures. We evaluate leakage

under three operational scenarios, modeled using three different

gain functions, under a variety of prior distributions in order to

bring clarity to this problem.

CCS CONCEPTS
• Security and privacy→ Information-theoretic techniques;
Management and querying of encrypted data; Formal security
models.

KEYWORDS
Quantitative Information Flow; Deterministic Encryption; Leakage

ACM Reference Format:
Mireya Jurado and Geoffrey Smith. 2019. Quantifying Information Leakage

of Deterministic Encryption. In 2019 Cloud Computing Security Workshop
(CCSW’19), November 11, 2019, London, United Kingdom. ACM, New York,

NY, USA, 11 pages. https://doi.org/10.1145/3338466.3358915

1 INTRODUCTION
Sensitive user data continues to be stolen in large-scale data breaches.

While standard encryption protects data confidentiality, it restricts

database application functionality. An alternative solution is to use

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCSW’19, November 11, 2019, London, United Kingdom
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6826-1/19/11. . . $15.00

https://doi.org/10.1145/3338466.3358915

specialized cryptography to enable encrypted databases such that

some application functionality is preserved. One approach to en-

crypted databases is property-revealing encryption which allows a

property of the underlying plaintext to be computed from the cipher-

text. An example of property-revealing encryption is deterministic

encryption which ensures that the same plaintext encrypted under

the same key will produce the same ciphertext. A client can deter-

ministically encrypt a column with sensitive information and then

host the data in a remote location, such as a cloud database. The

client can then create a query, encrypt the query’s keywords locally,

retrieve the encrypted column’s matching items from the cloud,

and decrypt them locally. Another example of property-revealing

encryption is order-revealing encryption, which allows the order of

two plaintexts to be computed from the ciphertexts. Order-revealing

encryption facilitates sorting and range queries.

Property-revealing encryption is controversial. The CryptDB sys-

tem, introduced by Popa, Redfiled, Zeldovich, and Balakrishnan in

2011, implements property-revealing encryption to enable the func-

tionality of database management systems [30]. In 2015, Naveed,

Kamara, andWright presented attacks on columns encrypted under

deterministic and order-revealing encryption, based on the design

of CryptDB [28]. Naveed et al. demonstrated that an attacker with a

well-correlated auxiliary database can perform an inference attack

on encrypted database columns in order to recover private data. In

response, Popa, Zeldovich, and Balakrishnan provided guidelines

for the safe use of the CryptDB system in which they claimed de-

terministic encryption is safe to use for a sensitive field if every

value in a column appears only once; deterministic encryption for

non-unique fields is described as “allowing some leakage” [31]. But

there does not currently exist a clear understanding of the leakage

of these encryption schemes.

There is considerable interest in the field of encrypted databases:

many cryptographic constructions are being considered [1, 7, 8,

13, 15, 16], different sophisticated attacks continue to be devel-

oped [9, 18, 21, 22, 32], and several academic workshops that focus

on this topic have been established [19, 34]. Furthermore, there

are existing commercial products that encrypt data to preserve

application functionality such as Bitglass [5], CipherCloud [14],

McAfee MVISION Cloud [24], Microsoft Always Encrypted [27],

Netskope [29], and Symantec CloudSOC [36].While encrypted data-

base solutions are extremely attractive, at present their security

implications are not well understood.

1.1 Contributions
In this paper, we undertake a detailed analysis of the leakage as-

sociated with deterministic encryption through the framework of

quantitative information flow (QIF). QIF is an information-theoretic

framework used to quantify the amount of information flow in a

https://doi.org/10.1145/3338466.3358915
https://doi.org/10.1145/3338466.3358915

system. In contrast with machine learning approaches, QIF can

provide concrete upper bounds that reflect the best results that

an optimal adversary is able to achieve. A key insight from this

framework is that there is no one “correct” way to measure leak-

age. Information flow depends on the operational scenario and

different operational scenarios require different leakage measures.

We contribute a leakage analysis under three different operational

scenarios in order to develop a much clearer understanding of the

information leakage associated with deterministic encryption.

Imagine a medical database in which there is a single column

with one row per patient that consists of the patient’s disease diag-

nosis. Let there be n patients and k possible diagnosis; assume k is

small. With strong encryption, the adversary is unable to determine

anything about the ciphertext. With deterministic encryption, the

adversary can see which entries are the same and possibly perform

some type of inference attack. Given this scenario, we would like

to quantify the leakage under different adversarial goals. For exam-

ple, the adversary may try to guess the entire column of diseases;

in Section 4, we see this corresponds to Bayes vulnerability. She

could also try to guess the disease of a patient, either a particular

patient i or an arbitrary patient. These operational scenarios are

evaluated in Section 5. We analyze leakage with respect to these

three operational scenarios and under various prior distributions

and as we will see, they are quite different. In some cases, there is

no leakage at all and in others, there is quite a bit.

• In the scenario where the adversary attempts to guess the en-

tire column, regardless of the distribution on diseases, there

is a large amount of leakage for large n. For some disease

distributions, the adversary can achieve a success proba-

bility close to 1, while for others, the adversary’s success

probability is far less than 1.

• In both scenarios where the adversary tries to guess the

disease of a single patient, under a uniform distribution on

diseases, there is no leakage at all.

1.2 Related Work
How to meaningfully discuss leakage within the field of encrypted

databases is an open question. The approach to leakage began

when Curtmola, Garay, Kamara and Ostrovsky defined a trace as
the information one is willing to leak about the interaction between

the client and the server [15]. Chase and Kamara then defined more

precise leakage functions as a way to precisely capture what is

being leaked by ciphertext and tokens [12]. This approach is first

applied to order-preserving encryption by Chenette, Lewi, Weis,

andWu [13]. More recently, leakage is discussed in terms of leakage
patterns that describe what data is revealed at a specific operation;

these compose to form a scheme’s leakage profile [20, 23]. The

leakage profile is fundamental to a scheme’s security definition, but

the threat posed by a leakage profile is unclear [10, 23].

Despite the existence of leakage profiles, cryptoanalysis research

has exploited different sets of intentionally revealed information

to accomplish adversarial goals such as data or query recovery [9,

18, 21, 22, 28, 38]. The following is only a sample of cryptoanalysis

research on property-revealing encryption. As discussed previously,

Naveed et al. develop attacks in which a well-correlated auxiliary

database is used to infer ciphertext values [28]. The adversarial

goal is to recover as many plaintext values in a single encrypted

column as possible, but the success of the attack depends on the de-

gree to which the auxiliary database is correlated. Grubbs, Sekniqi,

Bindschaedler, Naveed, and Ristenpart empirically evaluate order-

revealing and order-preserving encryption but explicitly “leave as

an open question providing a more formal analysis of inference

attacks” [21]. Durak, DuBuisson, and Cash explore the behavior of

leakage profiles on data under a non-uniform distribution and cross-

column correlations but could not quantify the attacks theoreti-

cally [18]. Bindschaedler, Grubbs, Cash, Ristenpart, and Shmatikov

also evaluate cross-column correlations and provide an attack that

functions as a maximum likelihood estimator which maps plain-

texts to ciphertexts given some prior distribution from an auxiliary

database. [4]. This attack corresponds to the operational scenario in

which the adversary attempts to guess as many positions correctly

as possible; in this work, we consider three different scenarios.

Prior work has analyzed leakage and quantified security in the

encrypted search domain. Sedghi, Doumen, Hartel, and Jonker pro-

vide an information-theoretic analysis of searchable encryption in

which they evaluate three seminal schemes [35]. De Capitani Di

Vimercati, Foresti, Jajodia, Paraboschi, and Samarati examine the

leakage associated with data indexing over fragments, where index-

ing is defined as a function mapping plaintext values to obfuscated

values. They enumerate ways in which combinations of indexing

and adversary knowledge can recover sensitive information [17].

Ceselli et al. provide a graph-based approach to quantify the secu-

rity provided by indexing [11]. Our work is the first application of

the QIF framework to this domain.

Organization. Section 2 provides an overview of the QIF frame-

work and Section 3 explains how deterministic encryption is mod-

eled within this framework. Sections 4 and 5 evaluate deterministic

encryption with respect to three different operational scenarios.

Section 6 then discusses computational challenges specific to our

leakage calculations and gives a detailed look at posterior vulnera-

bility. Lastly, Section 7 discusses future directions and concludes.

2 QUANTITATIVE INFORMATION FLOW
In this section, we provide a brief overview of the key concepts of

quantitative information flow (QIF). An excellent short introduction

can be found in McIver [25] and a book-length treatment can be

found in Alvim et al. [2]; this book includes all definitions and

theorems mentioned in this section, as well as proofs for these

theorems.

QIF is an information-theoretic approach that assumes that an

adversary’s prior knowledge about a secret input X drawn from

a finite set of possible secret values X is modeled as a probability

distribution π . Intuitively, a uniform π means that X has more

secrecy while a non-uniform π means the secret has less secrecy.

A system takes the secret X as input and produces observable

output Y , which may help the adversary achieve some goal, such

as guessing the secret or a property of the secret.

We can statically model all possible inputs and outputs of the

system as an information-theoretic channel matrix C that gives the

conditional probabilities p(y |x).

Definition 2.1 (Channel Matrix). Let X and Y be finite sets, in-

tuitively representing input values and observable output values.

π

1/4

1/2

1/4

C y1 y2 y3 y4

x1 1/2 1/2 0 0

x2 0 1/4 1/2 1/4

x3 1/2 1/3 1/6 0

→

J y1 y2 y3 y4

x1 1/8 1/8 0 0

x2 0 1/8 1/4 1/8

x3 1/8 1/12 1/24 0

→

[π ▷ C] 1/4 1/3 7/24 1/8

x1 1/2 3/8 0 0

x2 0 3/8 6/7 1

x3 1/2 1/4 1/7 0

Figure 1: An example of how a prior π and a channel C are mapped to joint matrix J and then to hyper-distribution [π ▷ C]
.

A channel matrix C from X to Y is a matrix, indexed by X × Y,

whose rows give the distribution on outputs corresponding to each

possible input. That is, entry Cx ,y denotes p(y |x), the conditional
probability of getting outputy given input x . Note that all entries in
a channel matrix are between 0 and 1 and each row sums to 1. □

We assume the adversary knows C and can update her knowl-

edge about X to a posterior distribution pX |y given each output y.
Each output y also has a probability p(y) of occurring. The funda-
mental insight is that the information-theoretic essence of a channel

matrix C is a mapping from priors π to distributions on posterior
distributions, which we call hyper-distributions and denote [π ▷ C].
This mapping is called the abstract channel denoted by C.

Figure 1 provides an example of how channel matrix C maps

a prior π to hyper-distribution [π ▷ C]. First we form the joint

matrix J, where Jx ,y gives the joint probability of each input-output

pair. Note that J is computed by multiplying row x of C by the

prior probability πx . Next we find the marginal distribution pY by

summing the columns of J; thus here we get pY = (1/4, 1/3, 7/24, 1/8).

Now each possible value ofY gives a posterior distribution onX , by

Bayesian updating. Those posterior distributions can be calculated

by normalizing the columns of J; the posterior distributions here
are (1/2, 0, 1/2), (3/8, 3/8, 1/4), (0, 6/7, 1/7), and (0, 1, 0).

We can imagine these posterior distributions as worlds that an
adversary seeing the output of C could end up in; we also refer to

these posterior distributions as inner distributions. It is important

to realize these worlds are not equally likely. These inner distri-

butions themselves have probabilities of occurring, which we call

the outer distribution; in this example, the outer distribution is

(1/4, 1/3, 7/24, 1/8). Notice in the last world, the adversary knows that

the secret is x2. However, this world only occurs with probability

1/8. It is more likely that the adversary ends up in a different world

in which she is less sure about the secret. The fundamental effect

of the channel is to enable each output y to provide the adversary

with different knowledge about the secret X . Finally, we observe
that the particular output labels y1,y2, . . . do not matter at all, as

renaming them to z1, z2, . . . would have no effect on the leakage.

As a result, the essence of the effect of channel C on prior π is

simply the hyper-distribution [π ▷C] shown on the right-hand side

of Figure 1.

2.1 Gain Functions and д-Vulnerability
We can use gain functions to measure the vulnerability of X with

respect to specific operational scenarios. We define gain functions

in the following way:

Definition 2.2 (Gain function). Given a finite, non-empty setX (of

possible secret values) and a non-empty setW (of possible actions),

a gain function is a function д : W ×X → R. □

We let д (w, x) dictate the adversary’s gain for performing action

w when the secret’s value is x . Often, actions are guesses the ad-
versary could make about the secret, but sometimes the best action

is to not make any guess at all, as in a scenario where making an

incorrect guess triggers a penalty.

An obvious and often relevant gain function addresses the ad-

versarial goal of guessing the entire secret correctly in one try;

we refer to this as the identity gain function denoted д
id
. In this

scenario, the set of actions available to the adversary is equal to

the set of secrets W = X. The adversary will receive a gain of 1 if

she guesses the entire secret correctly and 0 otherwise. The gain

function д
id
is defined in the following way:

Definition 2.3 (Identity gain function). The identity gain function

д
id
: X × X → {0, 1} is given by

д
id
(w, x) :=

{
1, ifw = x,

0, ifw , x

□

More generally, gain functions allow us to express a variety of

operational scenarios. For example, we can model the case in which

the adversary is allowed to make k guesses to correctly guess the

value of X . Or we can model the case in which the adversary must

guess whether or not X satisfies some property. We can also model

the case in which the adversary is penalized for making an incorrect

guess.

Given a gain function д, an optimal adversary will choose an

action that maximizes her expected gain with respect to π . We

define д-vulnerability in the following way:

Definition 2.4 (д-Vulnerability). The д-vulnerability of π is de-

fined as

Vд(π) := max

w ∈W

∑
x ∈X

πxд(w, x)

□

We refer to this as prior д-vulnerability as it represents how

vulnerable the secret is before the channel is run. For example,

notice that the д
id
-vulnerability of π is maxx πx . Intuitively, an

adversary attempting to guess the secret will guess a value with

highest probability of occurring. Because Vдid (π) represents such a

basic security concern, we have for it a special terminology Bayes
vulnerability and special notation V1(π); this notation emphasizes

that we are focusing on guessing the secret in one try.

Tomeasure the vulnerability of the secret after the channel is run,

we define posterior д-vulnerability as the average д-vulnerability in

the hyper-distribution:

Definition 2.5 (Posterior д-Vulnerability). Given a prior π , gain
function д and channel matrix C from X to Y, the posterior д-
vulnerability Vд[π ▷ C] is

Vд[π ▷ C] :=
∑
y∈Y
p(y),0

p(y)Vд(pX |y)

□

It is a theorem (fromAlvim et al. [3]) that posteriorд-vulnerability
can be calculated directly from the channel matrix without calcu-

lating the posterior distributions:

Theorem 2.6. Given prior π , gain function д, and channel matrix
C from X to Y, we have

Vд[π ▷ C] =
∑
y∈Y

max

w ∈W

∑
x ∈X

πxCx ,yд(w, x)

□

2.2 Leakage
The prior д-vulnerability Vд(π) represents how vulnerable the se-

cret is without information from the channel. The posterior д-
vulnerabilityVд[π ▷C] represents how vulnerable the secret will be

to an adversary who can see the output of the channel. Given that,

it is natural to measure the leakage of the channel by comparing

the prior д-vulnerability with the posterior д-vulnerability. This
comparison can be done additively or multiplicatively.

Definition 2.7 (Multiplicative and Additive д-Leakage). Given
prior probability distribution π , a gain function д, and channel

C, the multiplicative д-leakage is

L×
д (π ,C) :=

Vд[π ▷ C]

Vд(π)

and the additive д-leakage is

L+д (π ,C) := Vд[π ▷ C] −Vд(π)

In the case of д
id
, we use the name Bayes leakage and the notation

L×
1
(π ,C) and L+

1
(π ,C). □

It is a theorem (fromAlvim et al. [3]) that posteriorд-vulnerability
is always greater than or equal to prior д-vulnerability:

Theorem 2.8. Posterior д-vulnerability is always greater than or
equal to prior д-vulnerability: for any prior π , channel C and gain
function д, we have Vд[π ▷ C] ≥ Vд(π). □

This implies that multiplicative leakage is always greater or equal

to 1
1
and additive leakage is greater or equal to 0. If equality holds,

there is no leakage.

A crucial insight of QIF is that there is not a single “right” way

to measure leakage. There are many possible leakage measures

captured by the д-leakage family. The precise leakage is dependent

on the gain function д and the prior distribution π .

1
We assume that gain functions are restricted so that д-vulnerability is always non-

negative.

2.3 Refinement
A common situation when comparing two channels A and B is that

under some conditions channel A leaks more, and in others channel

B leaks more. Hence for robustness it is desirable to determine

when one channel never leaks more than another. This leads to the

notion of refinement:

Definition 2.9 (Refinement). Given channels A and B over input

space X, we say that A is refined by B, written A ⊑ B, if for any
prior π and gain function д we have Vд[π ▷ A] ≥ Vд[π ▷ B]. □

Remarkably, the Coriaceous Theorem (from McIver et al. [26],

though actually dating from the 1950’s and the work of David

Blackwell [6]) shows that refinement has a structural characteriza-

tion:

Theorem 2.10 (Coriaceous Theorem). For channel matrices A
and B over input space X, we have A ⊑ B iff there exists a post-
processing channel matrix R such that B = AR. □

As an example, consider the following channels (from [26]):

A z1 z2 z3

x1 2/5 0 3/5

x2 1/10 3/4 3/20

x3 1/5 1/2 3/10

B y1 y2 y3

x1 1 0 0

x2 1/4 1/2 1/4

x3 1/2 1/3 1/6

While A and B look very different, it turns out that they actually

refine each other—we have both A ⊑ B and B ⊑ A, as shown here:

B y1 y2 y3

x1 1 0 0

x2 1/4 1/2 1/4

x3 1/2 1/3 1/6

=

A z1 z2 z3

x1 2/5 0 3/5

x2 1/10 3/4 3/20

x3 1/5 1/2 3/10

R1 y1 y2 y3

z1 1 0 0

z2 0 2/3 1/3

z3 1 0 0

and

A z1 z2 z3

x1 2/5 0 3/5

x2 1/10 3/4 3/20

x3 1/5 1/2 3/10

=

B y1 y2 y3

x1 1 0 0

x2 1/4 1/2 1/4

x3 1/2 1/3 1/6

R2 z1 z2 z3

y1 2/5 0 3/5

y2 0 1 0

y3 0 1 0

As a result, we have by Theorem 2.10 that B never leaks more than

A, and also that A never leaks more than B. As a result, A and B
always have exactly the same leakage.2 Note that when we model

deterministic encryption in Section 3, we will encounter exactly this

phenomenon of two channels that look very different but actually

have the same leakage.

3 DETERMINISTIC ENCRYPTION MODEL
Secret. We define X to be a database column consisting of plain-

text values that are independently chosen at each index according to

a distribution δ . We therefore assume the distribution π on columns

comes from an underlying distribution of values δ .

2
In fact, because refinement is a partial order on abstract channels [26], A and B
actually denote the same abstract channel.

Channel. A dilemma that we face is that QIF is information-

theoretic, while encryption assumes a computationally-bounded ad-

versary. As a result, we cannot directly model the deterministic en-

cryption channel that maps a column of plaintexts (x1, x2, . . . , xn)
to the column of ciphertexts (c1, c2, . . . , cn) under some randomly-

chosen key — the trouble is that the resulting channel matrix leaks

everything, since each of its columns contains just one non-zero

entry (as is necessary for decryption to be possible).

Fortunately, cryptographers often consider an “ideal object” that

is conjectured to be computationally indistinguishable from the

actual cryptographic scheme, and the ideal object may be suitable

for QIF analysis. For deterministic encryption of b-bit strings, the

ideal object is a random permutation of type {0, 1}b → {0, 1}b ,

so that all such functions are equally likely to be chosen.
3
As far

as implementation is concerned, note that if our plaintexts are

128 bits long, then it suffices to encrypt them with AES under a

randomly-chosen key. Dealing with longer plaintexts requires more

care.
4

The ideal object is hence a probabilistic channel I that maps a

column (x1, x2, . . . , xn) of plaintexts to a column (v1,v2, . . . ,vn)
of random independent values, subject only to the constraint that

equality is preserved: xi = x j iff vi = vj .
While we could analyze the leakage of I directly, we canmake the

analysis easier by observing that I’s leakage is exactly the same as a
deterministic channel C that maps (x1, x2, . . . , xn) to a partition of

the indices {1, 2, . . . ,n}where each block in the partition consists of
those indices for which the corresponding x-values are equal. (For
example, (a,b,b, c,a)maps to the partition {{1, 5}, {2, 3}, {4}}.) For

we observe that I andC refine each other: I ⊑ C andC ⊑ I. ForC can

be factored into a cascade of I followed by a post-processing channel
R that maps a tuple (v1,v2, . . . ,vn) to the partition of {1, 2, . . . ,n}
based on the equalities among the vi ’s. Similarly, I = CS, where S
maps a partition into a tuple (v1,v2, . . . ,vn) of independent random
values that respects the partition (i.e. vi = vj iff i and j belong to
the same block). Because I and C refine each other, by Theorem 2.10

their leakage is always exactly the same.
5

Running Example. Our running example is a database column

of medical diagnoses where every index corresponds to a patient.

We depict this database column as a tuple; for example, (a, c, b,
a) would indicate that the first patient has disease a, the second
patient has c, and so forth. Let n be the length of the column (the

number of patients) and let there be k possible values (the number

of possible diseases). Figure 2 illustrates the channel matrix given

three possible diseases a, b, c (k = 3) and three patients (n = 3). The

channel matrix has 27 rows and 5 columns.

4 BAYES VULNERABILITY ANALYSIS
The first operational scenario we consider is Bayes vulnerability

in which the adversary attempts to guess the entire column. As an

intuition behind how an adversary would be able to do this, suppose

that the distribution on diseases is non-uniform such that δ (a) = 1/2,

3
This was an explicit criterion in the NIST AES design competition: “Algorithms will

be judged on . . . the extent to which the algorithm output is indistinguishable from a

random permutation.”

4
Section 3.1 of the CryptDB paper [30] describes a way to do this correctly.

5
Like channels A and B in Section 2, I and C actually denote the same abstract channel.

C y ∈ Y

x ∈ X {1, 2, 3} {1, 2} {3} {1, 3} {2} {2, 3} {1} {1} {2} {3}

(a, a, a) 1 0 0 0 0

(a, a, b) 0 1 0 0 0

(a, a, c) 0 1 0 0 0

(a, b, a) 0 0 1 0 0

(a, b, b) 0 0 0 1 0

(a, b, c) 0 0 0 0 1

(a, c, a) 0 0 1 0 0

(a, c, b) 0 0 0 0 1

(a, c, c) 0 0 0 1 0

(b, a, a) 0 0 0 1 0

(b, a, b) 0 0 1 0 0

(b, a, c) 0 0 0 0 1

(b, b, a) 0 1 0 0 0

(b, b, b) 1 0 0 0 0

(b, b, c) 0 1 0 0 0

(b, c, a) 0 0 0 0 1

(b, c, b) 0 0 1 0 0

(b, c, c) 0 0 0 1 0

(c, a, a) 0 0 0 1 0

(c, a, b) 0 0 0 0 1

(c, a, c) 0 0 1 0 0

(c, b, a) 0 0 0 0 1

(c, b, b) 0 0 0 1 0

(c, b, c) 0 0 1 0 0

(c, c, a) 0 1 0 0 0

(c, c, b) 0 1 0 0 0

(c, c, c) 1 0 0 0 0

Figure 2: Channel matrix C when n = 3 and k = 3

δ (b) = 1/3, and δ (c) = 1/6. For large n, we would expect that the

partition would have one block that is large, one that is medium

sized, and another that is small. Provided with this distribution

on diseases, there is an obvious guessing strategy: that the largest

block corresponds to a, the medium block corresponds to b, and
the smallest block corresponds to c. We can understand Bayes

vulnerability precisely by graphing the prior and posterior Bayes

vulnerability as a function of n. In order to limit the complexity

of the graphs while providing some insights, we limit ourselves to

three diseases (k = 3) which we call a, b, and c.
While we could explicitly graph the additive or multiplicative

leakage, a graph of the prior and posterior Bayes vulnerability is

more revealing. In a real world scenario, we expect one would

encounter a variety of distributions that illustrate many charac-

teristics. The distributions seen here were chosen because they

are simple, easy to understand, and illustrate the phenomena we

expect with more complicated distributions. In Figures 3 and 4,

we graph the prior and posterior Bayes vulnerabilities under four

disease distributions δ : 1) a uniform distribution, 2) an arbitrarily

chosen non-uniform distribution, 3) a distribution in which two

diseases have the same probability, and 4) a distribution in which

(a) (b)

Figure 3: Prior and posterior Bayes vulnerability under (a) a uniform distribution δ = (1/3, 1/3, 1/3) and (b) a non-uniform distri-
bution δ = (1/2, 1/3, 1/6)

two diseases are very close but not the same. (Please note that the

graphs are annotated with rounded values.)

4.1 Uniform vs Non-uniform
Let us first examine the prior and posterior Bayes vulnerability

under a uniform distribution of diseases δ = (1/3, 1/3, 1/3) depicted

in Figure 3(a). The solid blue line indicates an adversary who only

knows the prior distribution attempting to guess the entire column.

At n = 1, the prior Bayes vulnerability is 1/3. Given a single disease

to guess about, the adversary can guess a, b, or c and be correct with
equal probability. As n increases, the adversary will have to guess

the disease at every index and her probability of success quickly

goes towards 0, exactly (1/3)n . The dashed green line represents

the posterior Bayes vulnerability which corresponds to how well

the adversary can do given the output which indicates the way the

column is broken into blocks. We can observe that the posterior

curve is going to 1/6. Once n is large, we can generally expect three

blocks. The adversary must guess which is which and there are 6

possible ways the diseases could be allocated to the three blocks.
6

There is leakage under a uniform prior because the output has made

the adversary’s task much easier.

We can contrast this graph with Figure 3(b) which displays the

prior and posterior Bayes vulnerability under a non-uniform distri-

bution of diseases δ = (1/2, 1/3, 1/6). The prior Bayes vulnerability

again goes towards 0, but on the posterior side, as n grows, the

output is likely to consist of a large block, a medium block, and a

small block which the adversary will be able to reliably map to a, b,
and c and her success will go to 1.

6
While most index partitions where k = 3 can result from six possible plaintext

columns, the one exception is the partition with a single block which corresponds

to only three possible columns. This results in a posterior Bayes vulnerability that is

slightly higher than 1/6. For example, at n = 4, the posterior Bayes vulnerability is

roughly 0.173.

Comparing Figure 3(a) and Figure 3(b), we can see that additive

Bayes leakage is clearly higher in Figure 3(b). Surprisingly, the

multiplicative Bayes leakage is higher in Figure 3(a), although this

is not visible. While prior Bayes vulnerabilities under both priors

are close to zero, the prior vulnerability under the uniform prior is

much smaller than the prior vulnerability under the non-uniform

prior.

Let us examine when n = 200. Under the non-uniform prior,

the prior Bayes vulnerability is (1/2)200 and the posterior Bayes

vulnerability is close to 1 therefore the multiplicative leakage is

close to 2
200 ≈ 1.61 × 10

60
. In contrast, under the uniform prior,

the prior Bayes vulnerability is (1/3)200 and the posterior Bayes

vulnerability is around 1/6. Therefore, the multiplicative leakage

under the uniform prior is close to 1/6 × 3
200 ≈ 4.43 × 10

94
and

orders of magnitude higher than under the non-uniform prior.

4.2 Same vs Close
Now let us compare the prior and posterior Bayes vulnerability

when the probabilities of two diseases are the same and when they

are very close, illustrated in Figure 4 .

Under δ = (1/2, 1/4, 1/4), the posterior Bayes vulnerability in Fig-

ure 4(a) approaches 1/2. In terms of blocks, we expect one large

block and two roughly equal-sized blocks. The adversary will likely

be able to distinguish disease a as it is expected to be the largest

block, but she will have an equal chance of guessing which small

block is disease b and which is c. However, because it is possible that
the block sizes will not conform to the distribution, the posterior

Bayes vulnerability at n = 200 is slightly less than 0.5 at roughly

0.499986.

In comparison, Figure 4(b) shows that underδ = (1/2, 26/100, 24/100),

the posterior Bayes vulnerability slowly continues to grow, appar-

ently converging to 1. The largest n value for which we have done

the calculation is n = 5000, at which point the posterior Bayes

(a) (b)

Figure 4: Prior and posterior Bayes vulnerability when (a) two diseases have the same probability δ = (1/2, 1/4, 1/4) and (b) two
diseases have close probabilities δ = (1/2, 26/100, 24/100)

Table 1: Top 10 major diagnostic categories at a large inpa-
tient acute palliative care service [33].

Diagnosis Percentage

Cancer 41.3%

Cardiac Disease 17.4%

Pulmonary Disease 14.0%

Stroke 9.4%

Renal Disease 3.5%

Dementia 2.4%

Liver Disease 1.7%

AIDS 0.4%

Lou Gehrig’s Disease 0.2%

Other 9.6%

vulnerability is 0.977.
7
As n grows, the small probability differences

between b and c will become more visible in the block sizes and

the adversary will be more likely to correctly assign them to their

respective diseases.

4.3 Towards a More Realistic Distribution
As a gesture towards considering more realistic distributions, Ta-

ble 1 shows a distribution of the top 10 most prevalent diagnostic

categories at a large inpatient acute palliative care service [33] and

Figure 5 graphs the prior and posterior Bayes vulnerability under

that distribution.

The phenomenon we observed from the simple non-uniform

distribution in Section 4.1 is visible in this more complicated dis-

tribution: as n increases, the adversary’s ability to correctly guess

7
The computation for such largen values becomes very expensive due to combinatorial

explosion. This is discussed further in Section 6.

Figure 5: Prior and posterior Bayes vulnerability of ten diag-
nostic categories when δ is set according to Table 1.

the column increases. As can be seen in Figure 5, when n = 200 the

adversary has an 8% chance of guessing the entire column correctly.

5 SINGLE INDEX GAIN FUNCTION ANALYSIS
Next, we examine the case in which an adversary attempts to guess

the disease corresponding to a single index representing a single pa-

tient. We evaluate two variations of this scenario: (1) the adversary

is free to choose any index corresponding to a patient and guess

their disease and (2) the adversary is forced to guess the disease at

a given index belonging to a particular patient.

For the free gain function, the adversary is free to choose an

index in the column and a disease d ∈ D. Intuitively, this scenario

reflects the case when an adversary does not care about discovering

(a) (b)

Figure 6: Prior andposteriorд-vulnerability for both single index gain functions under (a) a uniformdistributionδ = (1/3, 1/3, 1/3)

and (b) a non-uniform distribution δ = (1/2, 1/3, 1/6)

a particular patient’s disease but instead is content with discovering

anyone’s diagnosis.

Definition 5.1 (Free gain function). The free gain function д
free

:

W ×X → {0, 1} when W := {(i,d) | 1 ≤ i ≤ n ∧ d ∈ D} is given

by

д
free

((i,d), x) :=

{
1 if xi = d

0 otherwise

□

For the forced variation of this gain function, the adversary is

given a specific index i where 1 ≤ i ≤ n and is forced to guess

a disease at this index. Intuitively, this gain function reflects the

scenario in which the adversary wants to discover the disease of a

high-value patient.

Definition 5.2 (Forced gain function). The forced gain function

д
forced

: W ×X → {0, 1} when W := {d | d ∈ D} is given by

д
forced

(d, x) :=

{
1 if xi = d

0 otherwise

□

The prior д-vulnerability for both variations is always the same.

The adversary’s strategy in both scenarios is simply to guess the

most likely disease; the only difference is that she can choose an

index for the free variation, but without insight from the channel,

it makes no difference as to which index she picks. The probability

that she is correct is equal to the probability of the most likely

disease and will be the same in both cases. Therefore, we can graph

the prior д-vulnerability alongside the posterior д-vulnerability for

both operational scenarios.

Note that under both distributions, the prior д-vulnerability in

Figure 6 is much higher than the prior Bayes vulnerability in Fig-

ure 3. Intuitively, this is because the task of guessing about a single

index correctly in one try is much easier than guessing correctly

about all n indices.

As Figure 6(a) demonstrates, under a uniform prior the three lines

coincide; this indicates that deterministic encryption leaks nothing

with respect to both single index gain functions. The channel pro-

vides the adversary with no additional information to determine

which block corresponds to which disease, and so whether she is

forced to guess about a particular index or is free to choose one, she

will only be correct with probability 1/3. As discussed previously,

given a uniform distribution on diseases, the additive leakage in

the Bayes scenario was approximately 1/6 but the additive leakage

in the single index scenarios is 0.

In the non-uniform case represented by Figure 6(b), the solid

blue line indicates that there is a 1/2 chance of guessing an index

correctly a priori. In the free scenario, the adversary can guess

about whatever block is most advantageous to guess about and

the posterior д-vulnerability goes up to 1 very quickly. But in the

forced scenario, the adversary may be forced to guess about a block

she is not sure about, and so the vulnerability goes up more slowly.

As we can see, the prior distribution can drastically affect the

leakage of the channel. The two prior distributions chosen here

show many aspects of the story but one could examine different

priors or a greater number of diseases which could exhibit other

details.

6 DISCUSSION
The following section describes some of the computational chal-

lenges involved with calculating prior and posterior д-vulnerability,
the differences in technique behind calculating the free and forced

д-functions, as well as a more detailed look at what comprises the

д-vulnerability for a given n.

Table 2: Number of corresponding integer and index parti-
tions per n where k = 3

n Integer Partitions Index Partitions

1 1 1

50 234 1.20 × 10
23

100 884 8.59 × 10
46

150 1,951 6.17 × 10
70

200 3,434 4.23 × 10
94

6.1 Computational Challenges
As discussed in Section 2, prior and posterior д-vulnerability can be

calculated from the channel matrix. However, the channel matrices

given a reasonably large n become enormous. For example, let

n = 100 and let k = 3. The resulting channel matrix has 3
100 ≈

5.15×10
47

rows. To calculate the number of columns in the channel

matrix (which represent all possible channel outputs), we need to

count the number of ways that n items can be partitioned into at

most k non-empty subsets. To this end, we can use a summation of

Stirling Numbers of the Second Kind [37]. The number of columns

in the channel matrix can then be calculated as follows:

|Y| =

min (n,k)∑
i=1

{
n

i

}
Therefore, the number of columns in C when n = 100 and k = 3

is approximately 8.59 × 10
46
. Given the size of this matrix, the

computation of prior and posterior д-vulnerability cannot be done

naïvely.

We can avoid addressing each index partition in isolation by

observing that the position of specific indices (the location of each

disease) does not affect the adversary’s strategy. Instead, the ad-

versary’s strategy is reliant on just the sizes of each block. We can

represent these block sizes as an integer partition of n into at most

k integers.

Briefly, let us examine the casewith 4 patients (n = 4) and 3 unique
diseases (k = 3). An adversary could observe the following blocks

that indicate the first two diseases are the same and the second

two are the same: {1, 2}{3, 4}. She could also observe {1, 3}{2, 4}

or {1, 4}{2, 3}. All of these observations correspond to the integer

partition [2, 2, 0] and will generate the same probabilities.

Since index partitions that correspond to the same integer parti-

tion generate the same probabilities, the key strategy to calculate

prior and posterior д-vulnerability is to use integer partitions in-

stead of index partitions. In the previous example where n = 100

and k = 3, only 884 integer partitions can account for all index

partitions. Table 2 illustrates that as the number of index partitions

grows explosively, the number of corresponding integer partitions

remains manageable. However, it should be acknowledged that as k
grows, the number of index partitions and integer partitions grow

even more explosively. For example, when k = 25 and n = 100,

there are 139,620,591 integer partitions that account for 4.37×10
114

index partitions. But for small values of k , integer partitions pro-
vide a mechanism by which we can work out the probabilities in a

tractable fashion.

6.2 Free vs Forced
For both single index д-functions, given an integer partition that

represents block sizes, we determine the best guess for every block

and its probability of being correct. For the free variation, we choose

the maximum over all probabilities, but in the forced variation, we

calculate a weighed average that addresses the probability that the

adversary will be asked to guess about an index in that block. One

can view the forced variation as restricting the adversary’s choices;

instead of being able to guess the optimal answer given a particular

channel output, she may be forced to guess about a block she is not

sure about.

6.3 A Detailed Look For a Given n
If we examine the uppermost dashed orange line in Figure 6(b),

we can see that when n = 12 and δ = (1/2, 1/3, 1/6), the posterior

д-vulnerability in the free scenario is slightly above 0.8. How this

value is calculated is quite complicated. There are many possible

outputs that can arise and these outputs have different threats that

they represent. Figure 7 illustrates the complexity behind this value

by depicting all possible outputs and their respective threats to the

secret.

Given 12 patients and 3 diseases, there are 88,574 possible index

partitions that can be output by the channel but these can be ac-

counted for with only 19 integer partitions. These integer partitions

represent the block structures that the adversary could observe.

Figure 7 visually represents these block structures as stacked bars

such that the first blue bar represents the largest block, the next

orange bar represents the second largest block, and the last green

bar represents the smallest block.

For every integer partition, annotated purple circles indicate

which block and disease guess the adversary shouldmake given that

output while the position of these circles indicate the adversary’s

probability of being correct. For example, let us examine the integer

partition [12, 0, 0] which represents the case that every patient has

the same disease. Given this partition, the adversary should guess

about any index in this block and she should guess that this index

corresponds to disease a; this guess will be correct 99.2% of the

time. In contrast, if the adversary observes the integer partition

[6, 5, 1], her best option is to guess that the index represented by

smallest block of size 1 corresponds to disease c.
The purple line at the bottom of the graph indicates the probabil-

ity of each block structure actually occurring. As stated previously,

given the integer partition [12, 0, 0], the adversary is very likely to

correctly guess a. Unfortunately for the adversary, this outcome is

very unlikely; she is much more likely to see an integer partition

that more closely reflects the distribution such as [6, 4, 2].

Posteriorд-vulnerability summarizes this table by calculating the

adversary’s probability of being correct (the purple circles) weighed

by the probability that the output occurs (the purple line). In this

case where n = 12, the posterior д-vulnerability for the free vari-

ation is approximately 0.813. Recall that the prior д-vulnerability
at n = 12 was 0.5. The posterior д-vulnerability is greater than

the prior, which is consistent with the theorem that states the

posterior д-vulnerability is always greater than or equal to prior

д-vulnerability. Yet while the overall posterior д-vulnerability can

Figure 7: An in-depth view of the posterior д-vulnerability in the free scenario when n = 12 under the prior δ = (1/2, 1/3, 1/6)

only increase, the д-vulnerability of certain posteriors can be less,

as illustrated by the [4, 4, 4] case which has a д-vulnerability of 1/3.

7 CONCLUSION AND FUTUREWORK
This paper provides a leakage analysis of deterministic encryption

under three operational scenarios: (1) the adversary must guess the

entire column, (2) the adversary is free to guess about an arbitrary

patient, and (3) the adversary is forced to guess about a particular

patient. We see that in some scenarios and under various priors,

there is considerable leakage while in others, there is no leakage at

all. This application of the quantitative information flow framework

provides more nuance than the coarse discussion of the leakage of

deterministic encryption that exists in the literature and contributes

a much clearer understanding of information leakage associated

with deterministic encryption.

We leave to future work considering correlations across columns.

There have already been inference attacks that address this sce-

nario [4, 18], and we would like to formally analyze leakage in this

setting. From the QIF perspective, leakage of a secret and another

correlated secret via a joint distribution is called Dalenius leakage.

Another important future direction is to analyze the leakage of var-

ious order-revealing encryption schemes. We would like to explore

if there exists a refinement order among schemes such that one

scheme is not more dangerous than another, regardless of prior

or gain function. Lastly, we would like to understand mitigation

strategies, such as inserting fake entries prior to uploading the

database to the cloud. Given that leakage is dependent on the prior,

we would like to know if one can functionally alter the prior by

inserting fake data to reduce the amount of leakage.

ACKNOWLEDGMENTS
We are grateful to Alexandra Boldyreva and Adam O’Neill for early

discussions of this work and to the anonymous reviewers for their

helpful comments. This work was partially supported by the Na-

tional Science Foundation under grant CNS-1749014.

REFERENCES
[1] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. 2004.

Order Preserving Encryption for Numeric Data. In Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data (SIGMOD ’04). ACM,

New York, NY, USA, 563–574. https://doi.org/10.1145/1007568.1007632

https://doi.org/10.1145/1007568.1007632

[2] Mário S Alvim, Konstantinos Chatzikokolakis, Annabelle McIver, Carroll Morgan,

Catuscia Palamidessi, and Geoffrey Smith. 2019. The Science of Quantitative
Information Flow. Springer International Publishing.

[3] Mário S Alvim, Kostas Chatzikokolakis, Catuscia Palamidessi, and Geoffrey

Smith. 2012. Measuring information leakage using generalized gain functions. In

Computer Security Foundations Symposium (CSF), 2012 IEEE 25th. IEEE, 265–279.
[4] Vincent Bindschaedler, Paul Grubbs, David Cash, Thomas Ristenpart, and Vitaly

Shmatikov. 2018. The Tao of Inference in Privacy-protected Databases. Proc. VLDB
Endow. 11, 11 (July 2018), 1715–1728. https://doi.org/10.14778/3236187.3236217

[5] Bitglass. 2014. Bitglass. https://www.bitglass.com/

[6] David Blackwell. 1951. Comparison of Experiments. In Proc. Second Berkeley
Symposium on Mathematical Statistics and Probability. 93–102.

[7] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill. 2009.

Order-Preserving Symmetric Encryption. In Advances in Cryptology - EURO-
CRYPT 2009, Antoine Joux (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,

224–241.

[8] Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry, and Joe

Zimmerman. 2015. Semantically Secure Order-Revealing Encryption: Multi-

input Functional Encryption Without Obfuscation. In Advances in Cryptology -
EUROCRYPT 2015, Elisabeth Oswald and Marc Fischlin (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 563–594.

[9] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. 2015. Leakage-

Abuse Attacks Against Searchable Encryption. In Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications Security (CCS ’15). ACM,

New York, NY, USA, 668–679. https://doi.org/10.1145/2810103.2813700

[10] David Cash, Feng-Hao Liu, Adam O’Neill, and Cong Zhang. 2016. Reducing the

Leakage in Practical Order-Revealing Encryption. IACR Cryptology ePrint Archive
(2016), 661. https://eprint.iacr.org/2016/661.pdf

[11] Alberto Ceselli, Ernesto Damiani, Sabrina De Capitani Di Vimercati, Sushil Jajodia,

Stefano Paraboschi, and Pierangela Samarati. 2005. Modeling and Assessing

Inference Exposure in Encrypted Databases. ACMTransactions on Information and
System Security 8, 1 (Feb 2005), 119–152. https://doi.org/10.1145/1053283.1053289

[12] Melissa Chase and Seny Kamara. 2010. Structured Encryption and Controlled

Disclosure. In Advances in Cryptology - ASIACRYPT 2010, Masayuki Abe (Ed.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 577–594.

[13] Nathan Chenette, Kevin Lewi, Stephen A. Weis, and David J. Wu. 2016. Practical

Order-Revealing Encryption with Limited Leakage. In Fast Software Encryption,
Thomas Peyrin (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 474–493.

[14] CipherCloud. 2010. CipherCloud. http://www.ciphercloud.com/

[15] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. 2006. Searchable

Symmetric Encryption: Improved Definitions and Efficient Constructions. In

Proceedings of the 13th ACMConference on Computer and Communications Security
(CCS ’06). ACM, New York, NY, USA, 79–88. https://doi.org/10.1145/1180405.

1180417

[16] Dawn Xiaoding Song, D. Wagner, and A. Perrig. 2000. Practical techniques for

searches on encrypted data. In Proceeding 2000 IEEE Symposium on Security and
Privacy. S P 2000. 44–55. https://doi.org/10.1109/SECPRI.2000.848445

[17] Sabrina De Capitani Di Vimercati, Sara Foresti, Sushil Jajodia, Stefano Paraboschi,

and Pierangela Samarati. 2013. On Information Leakage by Indexes over Data

Fragments. (2013), 94–98. https://doi.org/10.1109/ICDEW.2013.6547434

[18] F. Betül Durak, Thomas M. DuBuisson, and David Cash. 2016. What Else is

Revealed by Order-Revealing Encryption?. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, New York,

NY, USA, 1155–1166. https://doi.org/10.1145/2976749.2978379

[19] ESSA2. 2018. Second Workshop on Encryption for Secure Search and other Algo-
rithms. https://www.cc.gatech.edu/~aboldyre/ESSA/

[20] B. Fuller, M. Varia, A. Yerukhimovich, E. Shen, A. Hamlin, V. Gadepally, R. Shay,

J. D. Mitchell, and R. K. Cunningham. 2017. SoK: Cryptographically Protected

Database Search. In 2017 IEEE Symposium on Security and Privacy (SP). 172–191.
https://doi.org/10.1109/SP.2017.10

[21] P. Grubbs, K. Sekniqi, V. Bindschaedler, M. Naveed, and T. Ristenpart. 2017.

Leakage-Abuse Attacks against Order-Revealing Encryption. In 2017 IEEE Sym-
posium on Security and Privacy (SP). 655–672. https://doi.org/10.1109/SP.2017.44

[22] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012. Access

Pattern Disclosure on Searchable Encryption: Ramification, Attack and Mitiga-

tion.. In Network and Distributed System Security Symposium (NDSS’12).
[23] Seny Kamara, Tarik Moataz, and Olya Ohrimenko. 2018. Structured Encryption

and Leakage Suppression. In Advances in Cryptology – CRYPTO 2018, Hovav
Shacham and Alexandra Boldyreva (Eds.). Springer International Publishing,

Cham, 339–370.

[24] McAfee. 2018. McAfee MVISION Cloud. https://www.mcafee.com/enterprise/en-

us/products/mvision-cloud.html

[25] Annabelle McIver. 2019. Experiments in Information Flow Analysis. In Math-
matics of Program Construction. Springer International Publishing.

[26] Annabelle McIver, Carroll Morgan, Geoffrey Smith, Barbara Espinoza, and Larissa

Meinicke. 2014. Abstract Channels and Their Robust Information-Leakage Or-

dering. In Principles of Security and Trust, Martín Abadi and Steve Kremer (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 83–102.

[27] Microsoft. 2016. Always Encrypted (Database Engine). https://msdn.microsoft.

com/en-us/library/mt163865.aspx

[28] Muhammad Naveed, Seny Kamara, and Charles V. Wright. 2015. Inference

Attacks on Property-Preserving Encrypted Databases. In Proceedings of the 22Nd
ACM SIGSAC Conference on Computer and Communications Security (CCS ’15).
ACM, New York, NY, USA, 644–655. https://doi.org/10.1145/2810103.2813651

[29] Netskope. 2013. Netskope. https://www.netskope.com/

[30] Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Bal-

akrishnan. 2011. CryptDB: Protecting Confidentiality with Encrypted Query

Processing. In Proceedings of the Twenty-Third ACM Symposium on Operat-
ing Systems Principles (SOSP ’11). ACM, New York, NY, USA, 85–100. https:

//doi.org/10.1145/2043556.2043566

[31] Raluca Ada Popa, Nickolai Zeldovich, and Hari Balakrishnan. 2015. Guidelines

for Using the CryptDB System Securely. IACR Cryptology ePrint Archive (2015).
https://eprint.iacr.org/2015/979.pdf

[32] David Pouliot and Charles V. Wright. 2016. The Shadow Nemesis: Inference At-

tacks on Efficiently Deployable, Efficiently Searchable Encryption. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’16). ACM, New York, NY, USA, 1341–1352. https://doi.org/10.1145/2976749.

2978401

[33] Philip H. Santa-Emma, Ralph Roach, Mary Ann Gill, Pam Spayde, and Robert M.

Taylor. 2002. Development and Implementation of an Inpatient Acute Palliative

Care Service. Journal of Palliative Medicine 5, 1 (2002), 93 – 100.

[34] Encrypted Search. 2019. Encrypted Search Workshop. https://icerm.brown.edu/

topical_workshops/tw19-1-es/

[35] Saeed Sedghi, Jeroen Doumen, Pieter Hartel, and Willem Jonker. 2008. Towards

an Information Theoretic Analysis of Searchable Encryption. In Information and
Communications Security, Liqun Chen, Mark D. Ryan, and Guilin Wang (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 345–360.

[36] Symantec. 2016. Symantec CloudSOC. https://www.symantec.com/products/

cloud-application-security-cloudsoc

[37] J. H. van Lint and R.M.Wilson. 2001. ACourse in Combinatorics (2 ed.). Cambridge

University Press. https://doi.org/10.1017/CBO9780511987045

[38] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. 2016. All Your

Queries Are Belong to Us: The Power of File-Injection Attacks on Searchable

Encryption. In 25th USENIX Security Symposium (USENIX Security 16). USENIX
Association, Austin, TX, 707–720.

https://doi.org/10.14778/3236187.3236217
https://www.bitglass.com/
https://doi.org/10.1145/2810103.2813700
https://eprint.iacr.org/2016/661.pdf
https://doi.org/10.1145/1053283.1053289
http://www.ciphercloud.com/
https://doi.org/10.1145/1180405.1180417
https://doi.org/10.1145/1180405.1180417
https://doi.org/10.1109/SECPRI.2000.848445
https://doi.org/10.1109/ICDEW.2013.6547434
https://doi.org/10.1145/2976749.2978379
https://www.cc.gatech.edu/~aboldyre/ESSA/
https://doi.org/10.1109/SP.2017.10
https://doi.org/10.1109/SP.2017.44
https://www.mcafee.com/enterprise/en-us/products/mvision-cloud.html
https://www.mcafee.com/enterprise/en-us/products/mvision-cloud.html
https://msdn.microsoft.com/en-us/library/mt163865.aspx
https://msdn.microsoft.com/en-us/library/mt163865.aspx
https://doi.org/10.1145/2810103.2813651
https://www.netskope.com/
https://doi.org/10.1145/2043556.2043566
https://doi.org/10.1145/2043556.2043566
https://eprint.iacr.org/2015/979.pdf
https://doi.org/10.1145/2976749.2978401
https://doi.org/10.1145/2976749.2978401
https://icerm.brown.edu/topical_workshops/tw19-1-es/
https://icerm.brown.edu/topical_workshops/tw19-1-es/
https://www.symantec.com/products/cloud-application-security-cloudsoc
https://www.symantec.com/products/cloud-application-security-cloudsoc
https://doi.org/10.1017/CBO9780511987045

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Related Work

	2 Quantitative Information Flow
	2.1 Gain Functions and g-Vulnerability
	2.2 Leakage
	2.3 Refinement

	3 Deterministic Encryption Model
	4 Bayes Vulnerability Analysis
	4.1 Uniform vs Non-uniform
	4.2 Same vs Close
	4.3 Towards a More Realistic Distribution

	5 Single Index Gain Function Analysis
	6 Discussion
	6.1 Computational Challenges
	6.2 Free vs Forced
	6.3 A Detailed Look For a Given n

	7 Conclusion and Future Work
	Acknowledgments
	References

